An improved binary programming formulation for the secure domination problem
نویسندگان
چکیده
منابع مشابه
An Imperialist Competitive Algorithm and a Mixed Integer Programming Formulation for the Capacitated Vehicle Routing Problem
The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and t...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn Improved MIP Formulation for the Unit Commitment Problem
In this paper, we present an MIP formulation for the Unit Commitment problem that leads to significant computational time savings and almost-integral solutions when compared to the state-of-the-art formulations in the literature. Using a variety of test instances from the literature, we provide empirical evidence that the polyhedral structure of the new formulation is tighter than the polyhedra...
متن کاملA Mixed Integer Programming Formulation for the Heterogeneous Fixed Fleet Open Vehicle Routing Problem
The heterogeneous fixed fleet open vehicle routing problem (HFFOVRP) is one of the most significant extension problems of the open vehicle routing problem (OVRP). The HFFOVRP is the problem of designing collection routes to a number of predefined nodes by a fixed fleet number of vehicles with various capacities and related costs. In this problem, the vehicle doesn’t return to the depot after se...
متن کاملAn improved lower bound and approximation algorithm for binary constrained quadratic programming problem
This paper presents an improved lower bound and an approximation algorithm based on spectral decomposition for the binary constrained quadratic programming problem. To decompose spectrally the quadratic matrix in the objective function, we construct a low rank problem that provides a lower bound. Then an approximation algorithm for the binary quadratic programming problem together with a worst ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Operations Research
سال: 2020
ISSN: 0254-5330,1572-9338
DOI: 10.1007/s10479-020-03810-6